
Specification Formalisms

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA,

FNAE, FASc,

A K Singh Distinguished Professor in AI,

Dept of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

CS60030 FORMAL SYSTEMS

Why do we need “temporal” logic?

Propositional Logic

• Boolean formulas

Temporal Logic

• Properties span across cycle boundaries

• Consider a property of a two way round-robin arbiter

• If the request bit r1 is true in a cycle then the grant bit g1 has to be true within the next two cycles

Half

Adder

a1

a2

s

cout

cout a1 a2

s a1 a2

RR

Arbiter

r1

r2

g1

g2

2INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

What does “temporal” mean?

RR

Arbiter

r1

r2

g1

g2

If r1 is true in a cycle then g1 has to be

true within the next two cycles

r1(0)

r2(0)

g1(0)

g2(0)

r1(1)

r2(1)

g1(1)

g2(1)

r1(2)

r2(2)

g1(2)

g2(2)

time:0 time:1 time:2

Temporal worlds

t [r1(t) g1(t+1) g1(t+2)]

In propositional temporal logic, the time variable t is implicit.

• For example, we may write:

always r1 (next g1) or (next next g1)

3INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Temporal Operators

Two fundamental path operators:

• Next operator

• Xp – property p holds in the next state

• Until operator

• p U q – property p holds in all states up to the state where property q holds

Several derived (and commonly used operators)

• Eventual operator

• Fp – property p holds eventually (at some future state)

• Always operator

• Gp – property p holds always (at all states)

Temporal logics also support all the Boolean operators

All these operators are interpreted over paths of the underlying state machine (Kripke structure)

X p

p U q

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

F p

G p

p holds

q holds

Duality of Always & Eventual Operators:

 Fp = G(p) and Gp = F(p)

4

5

Nesting of Temporal Operators

F G p

G F p

Along the path there exists a state from which p will hold forever

Along the path for all states there will eventually be some state where p holds

alternatively

Along the path p will hold infinitely often

Transition Systems (Kripke Structure)

K = (AP, S, S0, T, L)

• AP is a set of atomic propositions

• S is a set of states

• S0 is a set of initial states

• T S X S, is a total transition relation

• L: S 2AP is a labeling function
S0

(010)
S1

(001)

S2
(100)

S3
(111)

S4
(000)

p

p

q r

p,q

6

7

Path

A path = n0, n1, … in a Kripke structure, K = (AP, S, S0, T, L), is a sequence of states such that k, (nk, nk+1) T

S0
(010)

S1
(001)

S2
(100)

S3
(111)

S4
(000)

p

p

q r

p,q

Sample paths:

s0, s1, s4, s4, s4, …

s0, s2, s3, s0, s2, s3, …

s0, s2, s3, s1, s3, s0, …

 = n0, n1, …, nk, nk+1, …

prefix of nk in

k – suffix of nk in

8

Linear Temporal Logic (LTL)

Syntax:

• Given a set, AP, of atomic propositions:

• All Boolean formulas over AP are LTL properties, and

• If f and g are LTL properties, then so are f, X f, and f U g

Semantics:

• A Kripke structure K models a LTL property g (denoted as K |= g) iff for every path , which starts at some

initial state of K, |= g

• This means that the property does not hold on K if there is any path in K which refutes the property

Semantics of Linear Temporal Logic

Let = s0, s1, … be a trace of the Kripke structure. Let k = sk, sk+1, … be the suffix of starting from sk.

Let L(sk) denote the set of labels of sk. Let ⊨ denote that satisfies .

• ⊨ p iff p L(s0)

• ⊨ iff not ⊨

• ⊨ 1 2 iff (⊨ 1 and ⊨ 2)

• ⊨ X iff 1 ⊨

• ⊨ 1 U 2 iff k, k 0, k ⊨ 2 and j, j<k, k ⊨ 1

• ⊨ F iff k, k 0, k ⊨

• ⊨ G iff k, k 0, k ⊨

For a Kripke structure, K:

• K ⊨ iff for every path originating at an initial state of K, ⊨

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

An alternative notation:

◯ is the same as X

♢ is the same as F

□ is the same as G

10

Examples

The property pUq holds

The property Fq holds

The property GFq does not hold

• Counterexample trace: s0, s1, s4, s4*

The property p U (qUr) does not hold

• Counterexample trace: s0, s2, s3, s0, (s2, s3, s0)*

S0
(010)

S1
(001)

S2
(100)

S3
(111)

S4
(000)

p

p

q r

p,q

11

Path Quantifiers

A

“ for all paths … ”

Used to specify that all of the paths or some of the paths starting at a particular state have some property

E

“ there exists a path … ”

12

Branching Time Logic

Branching time paradigm:

• Interpreted over computation trees, not linear traces

Computation tree:

a b

b c c

a b

b c

a b

c

c
c

13

Universal Path Quantification

AX p

p

. . .

. . .

. . .

. . .

p

In all the next states p holds

AG p

p

. . .

. . .

. . .

. . .

p

p

pp p p

Along all the paths p holds forever

Universal Path Quantification

AF p

. . .

. . .

. . .

. . .

p

p p

Along all the paths p holds eventually

A(p U q)

p

. . .

. . .

. . .

. . .

p

q

q q

Along all paths p holds until q holds

15

Existential Path Quantification

EX p

p

. . .

. . .

. . .

. . .

There exists a next state

where p holds

There exists a path along which

p holds forever

EG p

p

p

. . .

. . .

. . .

. . .
p

16

Existential Path Quantification

There exists a path along

which p holds eventually

. . .

. . .

. . .

. . .

p

EF p

There exists a path along

which p holds until q holds

E(p U q)

p

. . .

. . .

. . .

. . .

p

q

17

Computation Tree Logic (CTL)

Syntax:

• Given a set, AP, of atomic propositions:

• All Boolean formulas over AP are CTL properties, and

• If f and g are CTL properties, then so are f, fg, fg, AXf, EXf, A[fUg] and E[fUg]

• We also have derived properties like EFg, AFg, EGf, and AGf

Semantics:

• The property Af is true at a state s of the Kripke structure, iff the path property f holds on all paths starting at s

• The property Ef is true at a state s of the Kripke structure, iff the path property f holds on some path starting at s

18

Nested Properties in CTL

AX AG p

“ from all the next states p holds forever along all paths ”

EX EF q

“ there exists a next state from which there exists a path to a state where q holds ”

AG EF r

“ from any state there exists a path to a state where r holds ”

19

c

s

b

a

5

3

4

2

1 1

1

1

1

12

9

5

gr

req

req

reqreq

req

gr

grgr

grgrgr

From s the system always makes a request in future: AF req

All requests are eventually granted: AG(req AF gr)

Sometimes requests are immediately granted: EF(req EX gr)

Requests are not always immediately granted: AG(req AX gr)

Requests are held till grant is received: AG(req AF(req U gr))

Example: Analyzing Request and Grants

20

LTL versus CTL

CTL has more operators than LTL – which allows us to specify branching time properties (not supported in LTL).

Can all LTL properties be expressed in CTL?

• No.

• For example, FGp cannot be expressed in CTL

• Note that FGp is not equivalent to AFAGp

s0

s1

s2

p

p

p

p

p

p

p

p

p

p

p

Satisfies FGp

but not AFAGp

Memory Arbiter: Specs

mem-arbiter(input r1, r2, clock, output g1, g2)

Properties:

1. Request line r1 has higher priority than request line r2. Whenever r1 goes high, the grant line g1 must be

asserted for the next two cycles

G[r1 Xg1 XXg1]

2. When none of the request lines are high, the arbiter parks the grant on g2 in the next cycle

G[g1 g2]

3. When r1 is low for consecutive cycles, then g1 should be low in the next cycle

G[r1 Xr1 XX g1]

4. The grant lines g1 and g2 are mutually exclusive

G[g1 g2]

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
1

Mem

Arbiter

r1

r2

g1

g2

clock

SystemVerilog Assertions: A Quick Overview

LTL Properties:

P1: G[r1 Xg1 XXg1]

P2: G[g1 g2]

P3: G[r1 Xr1 XX g1]

P4: G[g1 g2]

property P1;

@(posedge clk)

r1 | ##1 g1 ##1 g1;

endproperty

property P2;

@(posedge clk)

!g1 | g2;

endproperty

property P3;

@(posedge clk)

!r1 ##1 !r1 | ##1 !g1;

endproperty

property P4;

@(posedge clk)

!g1 || !g2;

endproperty

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

Input Skew

Implicitly negative
Output Skew

Implicitly positive

Signal sampled here

Signal driven here

Simulation ticks

Clock ticks

req

1 652 43 7 8 9 10 11 12

1. Value of req at clock tick 5 is 1 not 0

2. Value of req at clock tick 9 is 0 not 1

SVA: Sequence Expressions

Sequence expressions are the basic building blocks of SVA

Examples:

##0 r1 // r1 is true in this cycle

##1 r1 // r1 is true in the next cycle

##5 r1 // r1 is true exactly after 5 cycles

##[5:9] r1 // r1 is true sometime between 5th and 9th cycle

Comparison with Timed LTL

• ##1 r1 is the same as X r1

• ##5 r1 is the same as F[5,5] r1

• ##[5:9] r1 is the same as F[5,9] r1

What is the meaning of the following sequence expression?

a ##[1:5] (b||c) ##3 d

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
3

Sequence expressions can be

given a name

For example, we may rewrite a

##[1:5] (b||c) ##3 d as:

sequence s1;

(b||c) ##3 d;

endsequence

sequence s2;

a ##[1:5] s1;

endsequence

Note the use of s1 here

Sequence Operations: Repetition

Consecutive Repetition

• p[*5] matches when 5 consecutive states satisfy p

• p[*3:5] ##1 q k (3k5) consecutive matches followed by q

• p[*3:$] ##1 q At least 3 consecutive matches followed by q

• The request r must remain high until the grant g is asserted: r | r[*1:$] ##1 g

• The LTL property, p U q, is equivalent to: p[*0:$] ##1 q Note the 0 here

1 652 43 7 8 9 10 11 12

Simulation ticks

Clock ticks

a

b

c

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
4a ##1 b [*3] ##1 c

Sequence Operations: Repetition

Goto Repetition

• p[*5] ##1 q the match of q at some time t is preceded by 5 matches

(not necessarily consecutive) of p, including one at time t 1.

• The transfer must be aborted if the transfer is “split” more than once: split[*2] ##1 abort

• p[*3:5] ##1 q the match of q at some time t is preceded by 3 to 5 matches

(not necessarily consecutive) of p, including one at time t 1.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
5

1 652 43 7 8 9 10 11 12

Simulation ticks

Clock ticks

a

b

c

a ##1 b [*3] ##1 c

Sequence Operations: Repetition

Non-consecutive Repetition

• split[*=2] ##1 abort The transfer is aborted if it is split more than once, but it is not

necessary that the abort takes place immediately after the second split.

• p[*=3:5] ##1 q matches at time t, if q matches at time t and

p matches 3 to 5 times before time t.

1 652 43 7 8 9 10 11 12

Simulation ticks

Clock ticks

a

b

c

a ##1 b [*=3] ##1 c
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

6

AND – operation

• The binary operator and is used when both operand expressions are expected to succeed

• End time of the operands can be different

Example:

(a ##1 b) and (a ##1 b ##2 c)

1 652 43 7 8 9 10 11 12

Simulation ticks

Clock ticks

a

b

c

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
7

Intersection – operation

• The binary operator intersect is used when both operand expressions are expected to succeed

• End times of the operand expressions must be the same

• Length of the two operand sequences must be same

Example:

(a ##1 b) intersect (a ##1 b ##2 c)

1 652 43 7 8 9 10 11 12

Simulation ticks

Clock ticks

a

b

c

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
8

OR – operation

• The binary operator or is used when at least one of operand expressions are expected to match

• End timed of the operand can be different

Example:

(a ##1 b) or (a ##1 b ##2 c)

1 652 43 7 8 9 10 11 12

Simulation ticks

Clock ticks

a

b

c

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
9

Local Variables

Property:

If X and Y are any two data items such that X was pushed before Y, then X will come out of the queue before Y

property FIFO_check;

int x;

int y;

@(posedge clk)

((Put && !QFull, x = DataIn) ##[1,$] (Put && !QFull, y = DataIn)) |

##[1,$] ((Get && x == DataOut) ##[1,$] (Get && y == DataOut)) ;

endproperty

FIFO

Queue

Get

Put

QFull

DataIn DataOut

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
0

Few More Constructs in SVA

Two types of implications

• Overlapped Implication Operator:

In the property, s1 | s2, the match of s2 starts from the same cycle as the one in which we complete a

match for s1.

• Non-overlapped Implication Operator:

In the property, s1 |=> s2, the match of s2 starts from the cycle after the one in which we complete a

match for s1.

Use of disable-iff

y must be asserted within 16 cycles of x, unless reset is asserted in between

property DisableOnReset;

@(posedge clk) disable iff (reset) x | ##[1:16] y;

endproperty

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
1

Immediate and Concurrent Assertions

Immediate Assertions

• Immediate assertions follow simulation event semantics for their execution

• Immediate assertions are executed like a statement in a procedural block

assert (expression) Action_block

Action_block ::= statement_or_null | [statement] else statement

Concurrent Assertions

• Describe behavior that spans over time

• Evaluation model is based on a clock

• The values of variables used are the sampled values in the specified clock edge

prop_p1: assert property (p1) pass_stat else fail_stat

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
2

Assert (guarantee) and Assume (constraint) Properties

Example: Every low priority request, r2, is eventually granted by the arbiter

property NoStarvation;

@(posedge clk) r2 | ##[1:$] g2 ;

end property

AssertNoStarvation: assert property (NoStarvation);

This requirement conflicts with our earlier property P1:

property P1;

@(posedge clk) r1 | ##1 g1 ##1 g1;

endproperty

GrantWhenRequest: assert property (P1);

Suppose we are now given with assumption that whenever g1 is asserted, r1 remains low for the next 4 cycles

property FairnessOfr1;

@(posedge clk) g1 |(!r1) [*4] ;

endproperty

AssumeR1IsFair: assume property (FairnessOfr1);

Mem

Arbiter

r1

r2

g1

g2

Under assumption AssumeR1IsFair, there is

no conflict between the properties

GrantWhenRequest and AssertNoStarvation

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
3

• If any assume property fails, then monitoring

of the assert properties become redundant

• assume properties may be used to prune the

state space before checking the assert

properties in formal verification

Cover Properties – Coverage Specifications in SVA

• The property P4 is interpreted non-vacuously only when r1 is low in two consecutive cycles (Vacuity rules are

applied only to the implication operator)

property P4;

@(posedge clk) !r1 ##1 !r1 | ##1 !g1;

endproperty

coverP4: cover property (P4);

• Coverage Results contain:

• Number of times attempted

• Number of times succeeded

• Number of times failed

• Number of times succeeded for vacuity

• Each attempt with an attemptID and time

• Each success/failure with an attemptID and time

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
4

Mem

Arbiter

r1

r2

g1

g2

Only for

Implication

Properties

Multiple Clock Support in SVA

Multiple clock is allowed in

• Concatenation of two sequences, where each sequence can have a different clock

sequence s1;

@(posedge clk0) sig0 ## @(posedge clk1) sig1;

endsequence

• The antecedent of an implication on one clock, while the consequent is on another clock

property s2;

@(posedge clk0) sig0 |=> @(posedge clk1) sig1;

endproperty

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
5

Architectural Styles for Assertion IPs

Event-based Specifications

• Only properties defined over interface signals

State-based Specifications

• Auxiliary state machines (ASM)

• Properties specified using state-bits of ASM and interface signals

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
6

The MyBus Protocol

Address and data multiplexed

Master asserts req, waits for gnt

Address Cycle: Then it floats the address and waits for rdy from slave

Data Cycle: On receiving rdy, it expects data in next cycle (if READ), or floats data in next cycle (if WRITE)

R/W indicates intent: read/write

After each data cycle, the master may start another address cycle by floating the next address

Properties:

• The protocol is non-preemptive. Once granted, the master owns the Bus until it lowers its req line

• If the master is in the ADDRESS cycle, it should not change the address floated in the Bus until it receives

the rdy signal from the slave

• Each DATA cycle is of unit cycle duration

Master

Interface

req
gnt

rdy

R/W

DADDR

(data/addr)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
7

A simple Bus Transfer

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
8

T1 T2 T3 T4 T5 T6 T7 T8 T9

A1 D1 A2 D2

IDLE WAIT INIT ADDR DATA DATAADDR IDLE

clk

req

gnt

Data/Addr

rdy

Master state

Event-based Coding

The protocol is non-preemptive. Once granted, the master owns the Bus until it lowers its req line

property NoPreemption;

@(posedge clk) $rose(gnt) | ##1 gnt [*1:$] ##0 !req ;

endproperty

$rose(gnt) is true in a cycle if the signal gnt rose in that cycle

If the master is in the ADDRESS cycle, it should not change the address floated in the Bus until it receives the rdy

signal from the slave

property IncorrectAddressStable;

int x;

@(posedge clk) (req && gnt && !rdy, x = DADDR) | ##1 (x == DADDR) ;

endproperty

This coding is not correct, since (req && gnt && !rdy) may be true at other places also.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
9

The Problem with Event-based Coding
T1 T2 T3 T4 T5 T6 T7 T8 T9

A1 D1 A2 D2

IDLE WAIT INIT ADDR DATA DATAADDR IDLE

clk

req

gnt

Data/Addr

rdy

Master state

property IncorrectAddressStable;

int x;

@(posedge clk) (req && gnt && !rdy, x = DADDR) | ##1 (x == DADDR) ;

endproperty

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
0

The Context is Important …

What’s the problem with this property?

property IncorrectAddressStable;

int x;

@(posedge clk) (req && gnt && !rdy, x = DADDR) | ##1 (x == DADDR) ;

endproperty

• We want to check this property only in the ADDRESS cycles, not in the DATA cycles

• How should be distinguish between an ADDRESS cycle and a data cycle?

property AddressStable;

int x;

@(posedge clk) (req && gnt && !rdy && !$fell(rdy), x = DADDR) | ##1 (x == DADDR) ;

endproperty

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
1

Demerits of Event-based Coding State-based Coding

Each DATA cycle is of unit cycle duration

property SingleCycleDataTransfer;

@(posedge clk) (gnt && $fell(rdy)) | ##1 (!gnt || !$fell(rdy)) ;

endproperty

• The expression (gnt && $fell(rdy)) characterizes a DATA cycle. Not obvious!!

State-based Coding:

• Characterizing the context is a major problem in event-based coding

• In state-based coding we use an auxiliary state machine to capture the contexts and the transitions between them

• We use the state labels for coding the actual properties

• Improves readability and also Reduces coding errors

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
2

Auxiliary State Machine and State-based Coding

IDLE

DATA ADDR

WAIT

INIT

!req

!req !req
!req

!req

req && !gnt
req && !gnt

req && gnt
req && gnt

req
req

req && rdy

req && !rdy

property AddressStable;

int x;

@(posedge clk)

(state == ‘ADDR, x = DADDR)

| ##1 (x == DADDR) ;

endproperty

property SingleCycleDataTransfer;

@(posedge clk)

(state == ‘DATA) | ##1 !(state == ‘DATA) ;

endproperty

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
3

ASM

Encoding the Auxiliary State Machine
interface MasterInterface(input req, gnt, rdy, clk, int DADDR) ;

logic [2:0] state;

‘define IDLE 3’b000

‘define WAIT 3’b001

‘define INIT 3’b010

‘define ADDR 3’b011

‘define DATA 3’b100

always @(posedge clk)

case (state)

‘IDLE: state <= req? (gnt? ‘INIT : ‘WAIT) : ‘IDLE;

‘WAIT: state <= req? (gnt? ‘INIT : ‘WAIT) : ‘IDLE;

‘INIT: state <= req? ‘ADDR : ‘IDLE;

‘ADDR: state <= req? (rdy? ‘DATA : ‘ ADDR) : ‘IDLE;

‘DATA: state <= req? ‘ADDR : ‘IDLE;

endcase

initial begin state = ‘IDLE; end

endinterface

State encoding

State transition relation

IDLE

DATA ADDR

WAIT

INIT

!req

!req !req
!req

!req

req && !gnt
req && !gnt

req && gnt req && gnt

req
req

req && rdy
req && !rdy

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
4

Factored State Machines

property AddressStable;

int x;

@(posedge clk) (state1 == ‘TRANSFER && state2 == ‘ADDR, x = DADDR)

| ##1 (x == DADDR) ;

endproperty

property SingleCycleDataTransfer;

@(posedge clk)

(state1 == ‘TRANSFER && state2 == ‘DATA) | ##1 !(state2 == ‘DATA) ;

endproperty

DATA ADDR

rdy
!rdy

IDLE

TRANSFER

WAIT

INIT

!req

!req !req

!req

req && !gnt
req && !gnt

req && gnt
req && gnt

req

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
5

• Let 𝚺 be an alphabet with 𝐀 ∈ 𝚺

• Regular expressions over 𝚺 have syntax:

• The semantics of regular expression 𝑬 is a language 𝑳 𝑬 ⊆ 𝚺∗:

Regular expressions

7

𝐸: : = 𝜙 | 𝜀 | 𝐴 𝐸 + 𝐸 ′ 𝐸 . 𝐸 ′ | 𝐸 ∗

𝑳 𝝓 = 𝝓∗ 𝑳 𝜺 = 𝜺 𝑳 𝑨 = 𝑨

𝑳 𝑬 + 𝑬′ = 𝑳 𝑬 ∪ 𝑳(𝑬′) 𝑳 𝑬. 𝑬′ = 𝑳 𝑬 . 𝑳(𝑬′) 𝑳 𝑬∗ = 𝑳 𝑬 ∗

• Regular expressions denote languages of finite words

• ω-Regular expressions denote languages of infinite words

• An ω-regular expression 𝑮 over 𝚺 has the form:

• where 𝑬𝒊, 𝑭𝒊 are regular expressions over 𝚺 with 𝜺 ∉ 𝑳(𝑭𝒊)

• Some examples:

• (𝑨 + 𝑩)∗ . 𝑩𝝎 ,

• (𝑩∗ . 𝑨)𝝎 ,

• 𝑨∗ . 𝑩𝝎 + 𝑨𝝎

Syntax of ω-regular expressions

8

𝐺 = 𝐸1. 𝐹1
𝜔 + … + 𝐸𝑛. 𝐹𝑛

𝜔 for n>0

• For 𝐿 ⊆ 𝛴∗ let 𝐿𝜔 = 𝑤1𝑤2𝑤3 … ∀𝑖 ≥ 0. 𝑤𝑖 ∈ 𝐿}

• Let ω-regular expression 𝐺 = 𝐸1. 𝐹1
𝜔 + … + 𝐸𝑛. 𝐹𝑛

𝜔

• The semantics of 𝑮 is the language 𝐿𝜔 𝐺 ⊆ 𝛴𝜔 :

• G1 and G2 are equivalent, denoted 𝐺1 ≡ 𝐺2 , if 𝐿𝜔 𝐺1 = 𝐿𝜔 𝐺2

Semantics of ω-regular expressions

8

𝐿𝜔 𝐺 = 𝐿 𝐸1 . 𝐿 𝐹1
𝜔 ∪ . . . ∪ 𝐿(𝐸𝑛). 𝐿(𝐹𝑛)𝜔

• 𝐿 is ω-regular if 𝐿 = 𝐿𝜔 𝐺 for some ω-regular expression 𝐺

• Examples over 𝛴 = {𝐴, 𝐵}:

• Language of all words with infinitely many As: (𝐵 ∗ . 𝐴)𝜔

• Language of all words with finitely many As: (𝐴 + 𝐵)∗ . 𝐵 𝜔

• The empty language: ∅𝜔

• ω-Regular languages are closed under ∪ , ∩ and complementation

1
0

ω-Regular languages

• Definition:

LT property P over AP is ω-Regular if

P is an ω-regular language over the alphabet 2AP

• Or, equivalently:

LT property P over AP is ω-Regular if

P is a language accepted by a nondeterministic Büchi automaton over 2AP

ω-Regular safety properties

1
1

